6 points, SCA Band 3, 0.125 EFTSL
Undergraduate - Unit
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.
Faculty
Organisational Unit
Department of Econometrics and Business Statistics
Chief examiner(s)
Coordinator(s)
Unit guides
Synopsis
This unit covers the methods and practice of statistical machine learning for modern data analysis problems. Topics covered will include recommender systems, social networks, text mining, matrix decomposition and completion, and sparse multivariate methods. All computing will be conducted using the R programming language.
Outcomes
The learning goals associated with this unit are to:
- identify and understand the statistical and computational trade-offs in modern data analysis problems
- develop computer skills for exploring modern data sets
- understand and apply machine learning algorithms to solve modern data analysis problems.
Assessment
Within semester assessment: 40% + Examination: 60%
Workload requirements
Minimum total expected workload to achieve the learning outcomes for this unit is 144 hours per semester typically comprising a mixture of scheduled learning activities and independent study. Independent study may include associated readings, assessment and preparation for scheduled activities. The unit requires on average three/four hours of scheduled activities per week. Scheduled activities may include a combination of teacher directed learning, peer directed learning and online engagement.
See also Unit timetable information