6 points, SCA Band 2, 0.125 EFTSL
Undergraduate - Unit
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.
Faculty
Organisational Unit
School of Physics and Astronomy
Coordinator(s)
Dr Scott Findlay (unit coordinator)
Dr Russell Anderson (laboratory coordinator)
Dr Timothy Petersen (computation workshop coordinator)
Unit guides
Synopsis
Quantum physics is at the core of physics and this unit provides a basis for understanding key quantum concepts, applications and associated phenomena. Thermal physics aims to understand how energy resides in matter as thermal energy, how energy moves irreversibly as heat between bodies at different temperatures, and how heat flow arises from entropy and the second law of thermodynamics; entropy is defined carefully in terms of the multiplicity of microstates of a system. Thermal physics explores how work can be interconverted with thermal energy and how entropy limits the efficiency of engines, heat pumps and refrigerators.
- Quantum Mechanics: the domain of quantum mechanics; particle and wave description; the Schrodinger equation, energy, momentum and angular momentum as operators, expectation values and stationary states; one-dimensional scattering and potentials, including the quantum oscillator, quantum mechanical tunnelling and quantum technologies; Heisenberg's uncertainty principle, the hydrogen atom; the Pauli exclusion principle and the periodic table; entanglement and Bell's theorem; introduction to quantum information.
- Thermal Physics: review of heat, work and internal (thermal) energy, phase transitions, latent heats and heat capacities; the inadequacy of heat capacities as a basis for thermometry; statisticial descriptions of a mascroscopic physical system: microstates, macrostates, multiplicity and entropy; the second law of thermodynamics; absolute temperature related to entropy; pressure related to entropy; review of PV diagrams and work in thermodynamics, especially as applied to ideal gases; adiabatic and isothermal processes; introduction to engines and the Carnot cycle; examples of thermodynamic cycles in applications; heat pumps and refrigerators; the Helmholtz free energy and an introduction to the Maxwell-Boltzmann distribution, the exponential atmosphere and Boltzmann factors; inter alia Maxwell's daemon, the thermodynamics of computation and the heat death of the Universe.
Outcomes
On completion of this unit students will be able to:
- Describe and perform calculations appropriate to key concepts in quantum mechanics, including the foundations of quantum mechanics and a wide variety of quantum systems in 1D, 2D and 3D;
- Describe and perform calculations related to thermal physics and statistical thermodynamics, including a foundational understanding of temperature, energy, heat and work, and its applications to heat pumps and engines, entropy and information;
- Apply numerical modelling to solve problems in quantum mechanics and thermal physics;
- Demonstrate awareness of scientific computing methods and visualization;
- Acquire, manipulate and interpret physical data and write scientific reports at a level suitable for publication.
Assessment
Examination (3 hours): 40% + Assignments and workshops: 30% + Practical work: 30% + Hurdle requirement: Students must achieve a pass mark in the practical component to achieve an overall pass grade.
Workload requirements
- Two 1-hour lectures per week
- One 2-hour laboratory class per week
- One 2-hour class per week - alternating between a computational class and a tutorial
- Six hours of independent study per week
See also Unit timetable information
Chief examiner(s)
This unit applies to the following area(s) of study
Prerequisites
Co-requisites
Prohibitions
PHS2011