MTH5115 - Algebraic topology - 2019

6 points, SCA Band 2, 0.125 EFTSL

Postgraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.



Organisational Unit

School of Mathematical Sciences

Chief examiner(s)

Professor Jessica Purcell


Professor Jessica Purcell

Unit guides



  • Second semester 2019 (On-campus)


Enrolment in the Master of Mathematics

MTH3130 and MTH3121 or MTH2121, and one of the following: MTH3140, MTH2140, or MTH3110




This unit is offered in alternate years commencing S2, 2019


This unit develops the main tools from algebra that are used to study and distinguish spaces. These tools are used in a variety of fields, from mathematics to theoretical physics to computer science. Algebraic topology relates to concrete problems, and sophisticated tools will be presented to tackle such problems. The core topics covered in the unit include the fundamental group and covering spaces, and homology. Cohomology and/or homotopy theory will also be studied.


On completion of this unit students will be able to:

  1. Demonstrate profound understanding of the core concepts in algebraic topology.
  2. Formulate complex mathematical arguments in algebraic topology.
  3. Apply sophisticated tools of algebraic topology to tackle new problems.
  4. Communicate difficult mathematical concepts and arguments with clarity.
  5. Apply critical thinking to judge the validity of mathematical reasoning.


NOTE: From 1 July 2019, the duration of all exams is changing to combine reading and writing time. The new exam duration for this unit is 3 hours and 10 minutes.

Examination (3 hours): 60% (Hurdle)

Continuous assessment: 40%

Hurdle requirement: To pass this unit a student must achieve at least 50% overall and at least 40% for the end-of-semester exam.

This unit is offered at both Level 4 and Level 5, differentiated by the level of the assessment. Students enrolled in MTH5115 will be expected to demonstrate a higher level of learning in this subject than those enrolled in MTH4115. The assignments and exam in this unit will use some common items from the MTH4115 assessment tasks, in combination with several higher level questions and tasks.

Workload requirements

  • 3 hours of lectures and 1 hour tutorial per week
  • 10 hours of independent study per week

See also Unit timetable information

This unit applies to the following area(s) of study

Master of Mathematics