MTH4111 - Differential geometry - 2019

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate, Postgraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

Faculty

Science

Organisational Unit

School of Mathematical Sciences

Chief examiner(s)

Dr Brett Parker

Coordinator(s)

Dr Brett Parker

Unit guides

Offered

Clayton

  • Second semester 2019 (On-campus)

Prerequisites

Enrolment in the Master of Mathematics

Prohibitions

MTH5111

Notes

This unit is offered in alternate years commencing S2, 2019

Synopsis

Manifolds are topological spaces that are locally homeomorphic to Euclidean space. A differentiable structure on a manifold makes it possible to generalize many concepts from calculus in Euclidean spaces to manifolds. This is an introductory course on differentiable manifolds and related basic concepts, which are the common ground for differential geometry, differential topology, global analysis, i.e. calculus on manifolds including geometric theory of integration, and modern mathematical physics. Topics covered in the unit include: Smooth manifolds and coordinate systems, tangent and cotangent bundles, tensor bundles, tensor fields and differential forms, Lie derivatives, exterior differentiation, connections, covariant derivatives, curvature, and Stokes's Theorem.

Outcomes

On completion of this unit students will be able to:

  1. Apply expert differential geometric techniques to solve problems that arise in pure and applied mathematics.
  2. Construct coherent and precise logical arguments.
  3. Develop and extend current techniques in differential geometry so that they can be applied to new situations in novel ways.
  4. Communicate complex ideas effectively.

Assessment

NOTE: From 1 July 2019, the duration of all exams is changing to combine reading and writing time. The new exam duration for this unit is 3 hours and 10 minutes.

Examination (3 hours): 60% (Hurdle)

Continuous assessment: 40%

Hurdle requirement: To pass this unit a student must achieve at least 50% overall and at least 40% for the end-of-semester exam.

Workload requirements

  • 3 hours of lectures and 1 hour of tutorial per week
  • 8 hours of independent study per week

See also Unit timetable information

This unit applies to the following area(s) of study

Master of Mathematics