MTH3160 - Functional analysis - 2017

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.



Organisational Unit

School of Mathematical Sciences


Dr Zihua Guo

Dr Julie Clutterbuck

Unit guides



  • Second semester 2017 (Day)


In this unit we develop the theory of metric spaces, Banach spaces and Hilbert spaces. Topics covered include a basic introduction to metric spaces, topology in metric and Banach spaces, dual spaces, continuous linear mappings between Banach spaces, weak convergence and weak compactness in separable Banach spaces, Hilbert spaces and the Riesz representation theorem. Applications of these theories may include the contraction mapping theorem and its usage to prove the Cauchy-Lipschitz theorem (existence and uniqueness of solution to ordinary differential equations).


On completion of this unit students will be able to:

  1. Explain the basic topological properties of metric spaces, and their applications to problems in other areas of mathematics;
  2. Apply some important basic theorems in analysis and their applications, such as the contraction mapping theorem and the Riesz representation theorem;
  3. Identify the conditions for existence and uniqueness of solutions to the initial value problem for systems of ordinary differential equations;
  4. Communicate mathematical ideas and work in teams as appropriate for the discipline of mathematics.


Examination (3 hours): 60% (Hurdle)

Continuous assessment: 40%

Hurdle requirement: To pass this unit a student must achieve at least 50% overall and at least 40% for the end-of-semester exam.

Workload requirements

Three 1-hour lectures and one 1-hour support class per week

See also Unit timetable information

Chief examiner(s)

This unit applies to the following area(s) of study