Faculty of Pharmacy and Pharmaceutical Sciences

print version

This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

Monash University

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.


Pharmacy and Pharmaceutical Sciences


Dr Elizabeth Yuriev (Parkville); Dr Thet Thet Htar (Malaysia)



  • First semester 2016 (Day)


  • First semester 2016 (Day)


This unit aims to provide students with a firm understanding of the basic physicochemical principles that underpin the science behind pharmacy as a discipline. This understanding, reinforced by some mathematical principles, sets the foundation for students to build upon in drug delivery units through second semester in first year, and in the second, third and fourth years of the course. The understanding of these principles will also assist students in their understanding in some areas of chemistry, physiology and biology.

Students will develop an:

  1. Understanding of the physicochemical principles that underpin pharmaceutical chemistry and drug delivery;
  2. Ability to undertake calculations concerning the physicochemical properties of pharmaceuticals and aspects of pharmaceutical products;


At the end of this unit students will be able to:

  1. Define acidity and basicity constants in the context of species in solution, apply the principles of buffering and acid-base titrations, calculate pH of aqueous solutions, and predict drug characteristics (absorption behaviour and solubility) based on their acid/base properties. Identify the most common organic functional groups that exhibit acidic or basic behaviour in aqueous solutions.

  1. Define and calculate thermodynamic properties, explain laws of thermodynamics and concepts of state functions, and relate thermodynamic concepts to the design and function of pharmaceutical products.

  1. Explain the concepts of phase equilibria, sketch and interpret phase equilibria diagrams, estimate physicochemical properties based on phase equilibria diagrams, and relate these parameters to properties of pharmaceutical products.

  1. Describe kinetics terminology, explain kinetic theories, construct rate laws based on experimental data, manipulate integrated rate laws to calculate concentration, relate reaction rates to temperature, and predict stability of pharmaceutical products in temporal terms.

  1. Conduct mathematical calculations involving manipulation of logarithmic and exponential functions, regression and correlation, and integration of simple algebraic functions.


Written examination (3 hours): 60%; workshops and tutorials: 25%; written quiz: 10%; Active learning 5%

Workload requirements

Contact hours for on-campus students:

  • Thirty six 1-hour lectures (24 face-to-face lectures + 12 hours active learning)
  • Nine 1-hour tutorials (5 small group and 4 whole class)
  • One 1.5 hour computer lab
  • Two 1 hour workshops

See also Unit timetable information

Chief examiner(s)

Additional information on this unit is available from the faculty at: