units

MAE4408

Faculty of Engineering

print version

This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

Monash University

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

Faculty

Engineering

Organisational Unit

Department of Mechanical and Aerospace Engineering

Coordinator(s)

Professor Rhys Jones/Mr John Baker

Offered

Clayton

  • Second semester 2016 (Day)

Synopsis

This unit will explain why aircraft structures/components fail, how engineers can learn from such failure and design to prevent it. Both fundamental and applied aspects of failure of aircraft structural components will be covered. The unit will detail the damage tolerance design philosophy, and how it fits into airworthiness requirements as described in the relevant Standard (JSSG 2006). The unit focuses on how fracture mechanics principles and modern fatigue crack growth laws are used to meet JSSG2006. To illustrate the effect of cracking on service aircraft we will consider flaw growth in a range of aircraft undergoing both in-service flight loading and full scale fatigue tests.

Outcomes

  • understand how fracture mechanics principles can be used to ensure the safety of aircraft structural components.
  • understand modern fatigue crack growth theories and how these can be used to ensure the continued airworthiness of aircraft structural components.
  • explain the way in which damage tolerant design fits into JSSG 2006.
  • solve problems associated with the residual strength of cracked aircraft structural members.
  • solve problems associated with crack growth in aircraft structural members.
  • design composite repairs to cracked aircraft structural member.

Assessment

Class Test 10%
Mid Semester Examination 20%
Class Project: 20%
Examination (2 hours): 50%
Students are required to achieve at least 45% in the total continuous assessment component and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.

Workload requirements

3 hours lectures, 2 hours practical classes or laboratories and 7 hours of private study per week

See also Unit timetable information

Chief examiner(s)

Prerequisites