Faculty of Engineering

print version

This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

Monash University

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.



Organisational Unit

Department of Mechanical and Aerospace Engineering


B Shirinzadeh



  • First semester 2016 (Day)


This unit introduces the student to the fundamental aspects in flight dynamics. The requirements and associated equations for static equilibrium and trim are developed. Further, these equations are treated to describe longitudinal static stability and lateral static stability. Performance and flying handling will be introduced. The equations of motion of a rigid vehicle are developed, together with the solution of these and introduction to state space model. The role of small perturbations, aerodynamic force and moment derivatives, aerodynamic control inputs will be established, together with linearized equations. The description of aircraft attitude and Euler angles are presented. The basis and formulations for lateral and longitudinal dynamics and stability will be developed. Control of aircrafts will also be introduced.


At the end of this unit, students are expected to have:

  • a working knowledge of the dynamic forces acting on a flight vehicle in different flight environments and an awareness of the use of equations governing dynamics in the design and use of flight vehicles in industry
  • an understanding of the aeronautical forces, through an understanding of finite wing theory, which contribute to the stability derivatives acting on an aircraft
  • an awareness of the development and use of equations governing longitudinal, lateral and directional static stability of an airplane
  • an understanding of rigid body dynamics and kinematics with focus on aircraft dynamics
  • knowledge and understanding of longitudinal and lateral vehicle dynamics, leading to aircraft's response
  • the ability to design and develop flight vehicles through an understanding of the underlying forces imposed on the vehicle structure
  • the ability to develop non-linear equations of motion and linearization of these necessary for the successful operation of flight vehicles in atmospheric flight
  • an appreciation of the role of flight vehicle dynamics in the design, testing and operation of flight vehicles
  • confidence in specifications and analysis of the flight vehicles dynamic characteristics and the control requirements
  • an appreciation of the fundamental principles underlying solid-body kinematics and dynamics for use in a general engineering workplace environment


Assignments/tutorials: 30%
Examination (3 hours): 70%
Students are required to achieve at least 45% in the total continuous assessment component and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.

Workload requirements

3 hours lectures, 2 hours practice sessions/laboratories and 7 hours of private study per week.

See also Unit timetable information

Chief examiner(s)


(ENG2091 and ENG2092) or(MTH2021 and MTH2032) or ENG2006 and MEC2401