units
FIT5142
Faculty of Information Technology
This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.
Faculty
Offered
Advanced methods of discovering patterns in large-scale multi-dimensional databases are discussed. Solving classification, clustering, association rules analysis and regression problems on different kinds of data are covered. Data pre-processing methods for dealing with noisy and missing data in the context of Big Data are reviewed. Evaluation and analysis of data mining models are emphasised. Hands-on case studies in building data mining models are performed using popular modern software packages.
On successful completion of this unit, students should be able to:
Examination (3 hours): 60%; In-semester assessment: 40%
Minimum total expected workload equals 12 hours per week comprising:
(a.) Contact hours for on-campus students:
(b.) Additional requirements (all students):
See also Unit timetable information
FIT5047 or FIT5045 or equivalent
Sound fundamental knowledge in maths and statistics; database and computer programming knowledge.