Faculty of Information Technology

print version

This unit entry is for students who completed this unit in 2016 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

Monash University

6 points, SCA Band 2, 0.125 EFTSL

Undergraduate - Unit

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.


Information Technology


Mr Neil Manson


South Africa

  • First semester 2016 (Day)
  • Summer semester B 2016 (Day)


In the modern corporate world, data is viewed not only as a necessity for day-to-day operation, it is seen as a critical asset for decision making. However, raw data is of low value. Succinct generalisations are required before data gains high value. Data mining produces knowledge from data, making feasible sophisticated data-driven decision making. This unit will provide students with an understanding of the major components of the data mining process, the various methods and operations for data mining, knowledge of the applications and technical aspects of data mining, and an understanding of the major research issues in this area.


On the completion of this unit, students should be able to:

  1. explain the motivation of data mining;
  2. explain why data mining is needed;
  3. explain the characteristics of major components of the data mining process;
  4. demonstrate the use of the basic data mining methods;
  5. analyse case studies to bridge the connection between hands-on experience and real-world applications;
  6. identify key and emerging application areas;
  7. use data mining tools to solve data mining problems.


Examination (3 hours): 50%; In-semester assessment: 50%

Workload requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

  • One 2-hour workshop
  • One 2-hour laboratory (for 6 weeks)

(b.) Study schedule for off-campus students:

  • Off-campus students generally do not attend lecture and tutorial sessions, however should plan to spend equivalent time working through the relevant resources and participating in discussion groups each week.

(c.) Additional requirements (all students):

  • A minimum of 8 hours independent study per week for completing lab and project work, private study and revision.

See also Unit timetable information

Chief examiner(s)


FIT1004 or FIT2010 or equivalent


CSE3212, GCO3828

Additional information on this unit is available from the faculty at: