Faculty of Science

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2015 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

FacultyFaculty of Science
Organisational UnitSchool of Biological Sciences
OfferedClayton Second semester 2015 (Day)
Coordinator(s)Dr Kay Hodgins


The structure, function, variation and evolution of DNA and of genomes are examined at both the individual and population levels in a range of organisms, including humans. Topics include: genome structure and approaches to genome analysis; genome projects and bioinformatics; functional and comparative genomics; evolution of gene families and movement of genes from organelle to nuclear genomes; genome variation between individuals and species and its applications in genetics; processes that change the genetic constitution of populations and species during evolution.


On completion of this unit students will be able to:

  1. Explain how genes are organised in chromosomes and genomes and the implications of this for gene expression and function, how genomes are mapped and sequenced, how genes and genomes are analysed at a molecular level, and the uses of genomics in modern genetic research;

  1. Illustrate how DNA and genomes change and the implications of this for evolution and its uses in modern applications such as DNA profiling;

  1. Explain how genes behave in populations, describe concepts such as mutation and genetic drift, and illustrate how genetic variation can result in fitness differences that may drive evolution through the process of natural selection;

  1. Understand the relevance and value of genetics to human society;

  1. Demonstrate skills in basic laboratory techniques, in population genetics and genomics problem-solving and experimental design, and in data collection, analysis, interpretation and presentation;

  1. Demonstrate and recognise the value of working with peers.


Examination (3 hours): 50%
Practical work (practical reports, project, mid-semester and end-of-semester tests): 45%
Weekly problem sets: 5%

Workload requirements

Two 1-hour lectures and one 3-hour combined tutorial/laboratory session per week

See also Unit timetable information

Chief examiner(s)

This unit applies to the following area(s) of study


BIO1011 and one of BIO1022 or BIO1042, plus GEN2041