units

PHS3042

Faculty of Science

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2013 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

To find units available for enrolment in the current year, you must make sure you use the indexes and browse unit tool in the current edition of the Handbook.

LevelUndergraduate
FacultyFaculty of Science
Organisational UnitSchool of Physics
OfferedClayton Second semester 2013 (Day)
Coordinator(s)Dr Alexis Bishop

Synopsis

This unit provides part of a major in experimental physics. It consists of two 12-lecture sub-units and laboratory work. Key areas are:

  1. Condensed Matter Physics: the concept of reciprocal space, the basic theory for the behaviour of electrons and phonons in solid crystalline materials, band theory and the Schrodinger equation, phonons, the Einstein model, electronic properties of semiconductors, carrier densities and Fermi levels, superconductivity;
  2. Scattering and Spectroscopy: fundamentals of diffraction theory, diffraction from crystals and amorphous materials, scattering of neutrons, x-rays and synchrotron radiation, principles of magnetic resonance Mossbauer, IR and Raman, XPS and X-ray absorption spectroscopies and laboratory work: experimental and/or computational laboratory work on relevant topics.

Outcomes

On completion of this unit students will be able to:

  1. Recall fundamental concepts from the sub-unit of Scattering Theory, which include light and matter waves, scattering of photons, neutrons and electrons, scattering potential and scattering integral, First Born approximation, the Fourier transform, Thomson scattering, scattering from atoms, molecules, crystals, amorphous materials, liquids and gases, form and structure factors, Bragg diffraction and Ewald sphere construction, crystallography, and small-angle scattering;

  1. Recall fundamental concepts from the sub-unit of Spectroscopy, which include interactions of photons and particles with matter, absorption and scattering cross-sections, elastic and inelastic scattering, principles and applications of each of the following: electron spin resonance, nuclear magnetic resonance, Mossbauer spectroscopy, infrared and Raman spectroscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy;

  1. Recall fundamental concepts from the sub-unit of Condensed Matter Physics, which include crystal structures, reciprocal lattice, quasicrystals, phonons and phonon dispersion , Einstein and Debye models of specific heat, energy bands and electron dispersion, superfluidity and superconductivity, derivation of critical temperature, two-fluid model for superfluid He-4, macroscopic wave function, vorticity, Quantization of circulation, Meissner effect, London equations, superconducting gap, Cooper pairs, Type I and Type II superconductors, flux quantization, systems with reduced dimensions, derivation of 0-D,1-D,2-D density of states, conduction in 1-D, properties of graphene and carbon nanotubes, amorphous and glassy materials, and structural characterization by scattering;

  1. Solve new problems in physics related to the core concepts of the unit by drawing on the theoretical underpinnings that illustrate the physics;

  1. Perform measurements and analysis on experiments that demonstrate the theoretical physics described in this and other Physics units;

  1. Produce experimental reports that present results, analyse and discuss the implications and outcomes of experimental work.

Assessment

Examination (3 hours): 48%
Laboratory work: 34%
Assignments: 18%
Students must achieve a pass mark in the practical component to achieve an overall pass grade.

Chief examiner(s)

Contact hours

An average of 2 hours lectures, 1.5 hours tutorial/workshop and 2.5 hours of laboratory work per week

Prerequisites