Faculty of Engineering

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2013 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

To find units available for enrolment in the current year, you must make sure you use the indexes and browse unit tool in the current edition of the Handbook.

FacultyFaculty of Engineering
Organisational UnitDepartment of Mechanical and Aerospace Engineering
OfferedClayton Second semester 2013 (Day)
Coordinator(s)Professor Julio Soria


This unit introduces differential and integral forms of governing equations in tensor notation, reviews inviscid and viscous aerodynamic flows and analyses the derivation of thin shear layer equations. Solution methods for boundary layer equations for the prediction of drag, lift and boundary layer separation on airfoil surfaces follows. Flow instability and transition from laminar to turbulent flow is examined and boundary layer stability analysis is introduced. Turbulence physics and turbulent shear flows and the analysis of turbulent shear flows are covered together with an introduction to statistical analysis in turbulence and aerodynamic flow control.


  1. Understand the tensorial development of the governing conservation equations for aerodynamics problems
  2. Understand the physics of inviscid and viscous aerodynamics
  3. Understand the derivation of the equations governing boundary layer flow and shear flows in general
  4. To be able to solve the boundary layer equations for generic geometries using both differential analysis and integral analysis to predict drag, lift and boundary layer separation on airfoil surfaces
  5. Understand the physics of flow instability and laminar-turbulent transition
  6. Understand the analysis of Tollmien-Schlichting instability and transition in boundary layer flow and recognize factors controlling laminar-turbulent boundary layer transition
  7. Understand statistical analysis of turbulence and the general properties of turbulent shear flows
  8. Understand the structure of turbulent boundary layer flow and to be able to derive and interpret the equations governing the mean flow, kinetic energy and Reynolds stresses of a turbulent boundary layer
  9. Understand the quantitative description of turbulent boundary layer flow and to be able to calculate turbulent boundary layer drag and predict adverse pressure gradient separation on airfoils
  10. To recognise and interpret boundary layer control methodologies on airfoils to minimize drag and avoid boundary layer separation and loss of lift.


Project/Assignment: 30%
Examination (3 hours): 70%

Chief examiner(s)

Contact hours

3 hours lectures, 2 hours practice sessions or laboratories and 7 hours of private study per week