Faculty of Engineering

Skip to content | Change text size

print version

Monash University

Monash University Handbook 2011 Undergraduate - Unit

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

FacultyFaculty of Engineering
OfferedClayton First semester 2011 (Day)
Coordinator(s)A Fouras


Introduction to biomedical engineering from the perspective of engineering based technologies of sensing and imaging. Topics include: basis of light and radiation, principles of synchrotron operation, practical study at the Australian synchrotron, human physiology for engineers, principles of detection and sensing of signals, biomedically relevant properties and phenomena.

The unit begins with an intensive lecture series culminating in a mid-semester examination. During this time project teams are formed and project proposals are developed. Project work continues with groups and individuals combining projects, allocated resources, knowledge and skills to develop a biomedical imaging device. The unit culminates in a test of this biomedical device at the Australian synchrotron.


To instil:

  • understanding of the basic physics of light and radiation
  • working knowledge of synchrotrons
  • familiarity with the basic human physiological systems
  • an understanding of the physics and principles in the detection of radiation (including visible and X-ray light) and biomedical data

To develop:
  • project management skills in a technically complex environment
  • the ability to independently conduct study that supports knowledge and skills gained in coursework
  • the ability to apply knowledge and skills learned in coursework and independent study for the design of biomedical imaging and sensing devices


20% mid-semester Exam; 80% Project (student must pass both assessments to pass the subject)

Chief examiner(s)

Professor Gary Codner

Contact hours

Weeks 1-6: 4 hours lectures, 1 hour tutorials and 6 hours of private study
Weeks 7-12: 2 hours practical, 3 hours tutorials and 6 hours private study


Completion of 144 credit points