Skip to content | Change text size

MTH3011

Partial differential equations ( 6 points, SCA Band 2, 0.125 EFTSL)

Undergraduate
(SCI)

Leader: Associate Professor Hans Lausch

Offered:
Clayton First semester 2005 (Day)

Synopsis: Classification of second-order linear PDEs; appropriate boundary and/or initial conditions and well-posed problems; parabolic equations: the diffusion equation, the maximum principle, explicit and implicit finite-difference techniques, numerical instability; hyperbolic equations: the wave equation; the advection equation, the method of characteristics, numerical techniques, the CFL condition, elliptic equations: Laplace's equation, iterative numerical techniques.

Objectives: On completion of this unit, students will understand the role of PDEs in the mathematical modelling of physical processes; be able to distinguish between the three basic types of PDEs and recognise appropriate initial and/or boundary conditions; be able to solve simple problems which are modelled by the wave equation, diffusion equation and Laplace?s equation and understand their mathematical properties; understand the principles of finite-difference approximation; appreciate the advantages and disadvantages of a range of numerical techniques; be able to identify when a technique is susceptible to numerical instability; understand some basic iterative methods; have practical experience in determining an approximate numerical solution of PDEs using computers, including for the graphical display of the results.

Assessment: Examination (3 hours): 60% + Assignments and tests: 30% + Laboratory work: 10%

Contact Hours: Three 1-hour lectures and one 2-hour laboratory class per week

Prerequisites: MTH2010 and MTH2032 or equivalent

Prohibitions: MAT3022, ASP3111, ATM3141