

Course progression map for 2018 commencing students

This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It does not substitute for the list of required units as described in the course 'Requirements' section of the Handbook.

C3001 Bachelor of Computer Science Advanced (Honours) – IBL/RBL

The placement of units may be rearranged to provide flexibility in choice of elective units.

YEAR 1 Semester 1	FIT1053 Algorithms and programming in python (advanced)	FIT1047 Introduction to computer systems, networks and security	MAT1830 Discrete mathematics for computer science	Elective
YEAR 1 Semester 2	FIT1054 Computer science (advanced)	FIT1049 IT professional practice	MAT1841 Continuous mathematics for computer science OR MTH1030/MTH1035 Techniques for modelling	Elective
YEAR 2 Semester 1	FIT2004 Algorithms and data structures	FIT2083 Innovation and research in computer science	FIT2099 Object oriented design and implementation	Elective
YEAR 2 Semester 2	FIT2014 Theory of computation	FIT2102 Programming paradigms	FIT2082 Computer science research project	Elective
YEAR 3 Semester 1	FIT3045 Industry Based Learning or FIT3153 Research placement (18 points)			
YEAR 3 Semester 2	FIT3155 Advanced data structures and algorithms	FIT3143 Parallel computing	FIT3171 Databases	Elective
Summer semester	Elective			
YEAR 4 Semester 1	FIT4441 Honours thesis	FIT4442 Honours thesis	Approved level 3 computer science elective	Elective
YEAR 4 Semester 2	FIT4443 Honours thesis	FIT4444 Honours thesis	Approved level 4/5 computer science elective	Elective

Α	Foundational computer science	
С	Specialist discipline knowledge	
B&D	Research and professional skills	
Е	Applied practice	
F	Free elective study	

 $Source: \textit{Monash University 2018 Handbook} - \texttt{http://www.monash.edu.au/pubs/2018} \\ \text{handbooks/maps/map-C3001.pdf} \\ \textit{CRICOS Provider Number: } 00008C$

While the information provided herein was correct at the time of viewing and/or printing, Monash University reserves the right to alter procedures, fees and regulations should the need arise. Students should carefully read all official correspondence, other sources of information for students and the official university noticeboards to be aware of changes to the information contained herein. The inclusion in a publication of details of a course in no way creates an obligation on the part of the university to teach it in any given year, or to teach it in the manner described. The university reserves the right to discontinue or vary courses at any time without notice. Students should always check with the relevant faculty officers when planning their courses. Some courses and units are described which may alter or may not be offered due to insufficient enrolments or changes to teaching personnel.

Course progression map for 2018 commencing students

This progression map provides advice on the suitable sequencing of units and guidance on how to plan unit enrolment for each semester of study. It does not substitute for the list of required units as described in the course 'Requirements' section of the Handbook.

C3001 Bachelor of Computer Science Advanced (Honours)

The placement of units may be rearranged to provide flexibility in choice of elective units.

YEAR 1 Semester 1	FIT1053 Algorithms and programming in python (advanced)	FIT1047 Introduction to computer systems, networks and security	MAT1830 Discrete mathematics for computer science	Elective
YEAR 1 Semester 2	FIT1054 Computer science (advanced)	FIT1049 IT professional practice	MAT1841 Continuous mathematics for computer science OR MTH1030/MTH1035 Techniques for modelling	Elective
YEAR 2 Semester 1	FIT2004 Algorithms and data structures	FIT2083 Innovation and research in computer science	Elective	Elective
YEAR 2 Semester 2	FIT2014 Theory of computation	FIT2102 Programming paradigms	FIT2082 Computer science research project	Elective
YEAR 3 Semester 1	FIT3144 Advanced computer science project (12 points)	FIT2099 Object-oriented design and implementation	Approved level 3 computer science elective	Elective
YEAR 3 Semester 2		FIT3155 Advanced data structures and algorithms	FIT3143 Parallel computing	FIT3171 Databases
YEAR 4 Semester 1	FIT4441 Honours thesis	FIT4442 Honours thesis	Approved level 3 computer science elective	Elective
YEAR 4 Semester 2	FIT4443 Honours thesis	FIT4444 Honours thesis	Approved level 4/5 computer science elective	Elective

Α	Foundational computer science	
С	Specialist discipline knowledge	
B&D	Research and professional skills	
Е	Applied practice	
F	Free elective study	