units
TRC2200
Faculty of Engineering
This unit entry is for students who completed this unit in 2015 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.
Level | Undergraduate |
Faculty | Faculty of Engineering |
Offered | Clayton Second semester 2015 (Day) Malaysia Second semester 2015 (Day) |
Coordinator(s) | Dr Prabhakar Ranganathan (Clayton); Dr Alpha Agape Gopalai (Malaysia) |
This unit provides the discipline basis for applications in energy, power and motive force where fluids are involved. It also provides a basic level of knowledge and problem solving capability in heat transfer. These disciplines are central to mechanical engineering and, as a consequence, are essential knowledge for mechatronic engineers whose designs usually have mechanical elements. Also, they provide the basis for the use of hydraulic and pneumatic power as motive forces, which also form an important part of the unit content.
To understand the concepts of thermo-fluid properties, systems and control volumes. To be able to analyse thermodynamic processes and simple cycles. To be able to calculate hydrodynamic forces on in static fluids or those in rigid body motion. To be able calculate fluid flow in pipes, including pumps, valves and other fittings. To be able to analyse and design the elements of fluid and pneumatic control systems.
Assignments: 30%
Tests: 20%
Examination: 50%
Students are required to achieve at least 45% in the total continuous assessment component (assignments, tests, mid-semester exams, laboratory reports) and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.
3 hours lectures, 2 hours of problem solving classes or laboratories and 7 hours of private study per week
See also Unit timetable information