Faculty of Engineering

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2015 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

FacultyFaculty of Engineering
Organisational UnitDepartment of Mechanical and Aerospace Engineering
OfferedClayton First semester 2015 (Day)
Coordinator(s)Dr Chao Chen (Clayton)


Spatial descriptions and transformations. Manipulator forward and inverse kinematics. Differential relationships and Jacobian. Manipulator dynamics: Lagrangian and Newton Euler formulations. Design of mechanisms and end-effectors. Actuation, sensing and control. Computational geometry for design, manufacture, and path planning. Robotics in manufacturing and automation. Techniques for modelling, simulation and programming of robotic tasks. Advanced mathematical formulations. Introduction to advanced robotics. A self-directed learning component completes the unit.


Students are expected to gain the ability to appreciate, design, analyse and control robotic mechanisms.

This will include:

  1. solve problems of direct and inverse kinematics
  2. derive robotic dynamics models by using both Lagrangian formula and New-Euler equations
  3. design linear and nonlinear motion controllers and force controllers
  4. program robotic tasks via methods in path planning and kinematics
  5. evaluate the design and performance of serial robotic manipulators in terms of kinematics, workspace and dynamics


Examination (3 hours): 70%
Project and laboratory work: 30%

Workload requirements

3 hours lectures, 3 hours laboratories/tutorials and 7 hours of private study per week.

See also Unit timetable information

Chief examiner(s)