Faculty of Science

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2015 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.

FacultyFaculty of Science
Organisational UnitSchool of Chemistry
OfferedClayton First semester 2015 (Day)
Malaysia First semester 2015 (Day)
Coordinator(s)Associate Professor Lisa Martin (Clayton); Associate Professor Lim Yau Yan (Malaysia)


Basic principles and key aspects of molecular design, synthesis, structure and reactivity of carbon based molecules, organo-transition metal chemistry and metal complexes with examples taken from important biological, industrial and environmental processes. It will cover aspects of reactive intermediates; carbocations; molecular rearrangements; nucleophilic substitution; elimination reactions; free radicals; aromatic and heterocyclic chemistry; pericyclic reactions; carbonyl compounds; geometry, properties and bonding in transition metal complexes; metal coordination environments in metalloproteins; metal ions in metalloproteins; metal complexation in aquatic systems.


On completion of this unit students will be able to:

  1. Appreciate the tools used by chemists to design, prepare and study novel carbon based molecules and metal complexes;

  1. Apply the general principles of transition metal chemistry to industrial and environmental processes;

  1. Formulate the syntheses of a number of compounds using organic or inorganic chemistry processes;

  1. Appreciate and utilise a number of organic and inorganic reactions, including processes involving metal ions;

  1. Use common synthetic procedures and modern analytical and spectroscopic methods for the synthesis and analysis of chemical compounds;

  1. Demonstrate safe laboratory practices and apply OHSE principles;

  1. Communicate their chemistry in oral and written form and analyse how the material taught links to the social and environmental responsibility of chemists in the global community.


Examination (3 hours): 50%
Practical work: 30%
Online assessment: 10%
Tutorials: 10%
Students must achieve a pass mark in their laboratory work to achieve an overall pass grade.

Workload requirements

Three 1-hour lectures and the equivalent of 3 hours laboratory activity per week

See also Unit timetable information

Chief examiner(s)

This unit applies to the following area(s) of study


CHM1011 or CHM1051, plus CHM1022 or CHM1052. Students without these should consult the second year coordinator.