units
CHE4162
Faculty of Engineering
This unit entry is for students who completed this unit in 2015 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered.
Level | Undergraduate |
Faculty | Faculty of Engineering |
Organisational Unit | Department of Chemical Engineering |
Offered | Clayton Second semester 2015 (Day) Malaysia Second semester 2015 (Day) |
Coordinator(s) | Dr Wenlong Cheng/Dr Ravi Jagadeeshan (Clayton); Dr Edward Ooi Chien Wei(Malaysia) |
This unit provides a thorough introduction to particle technology. The unit begins with understanding particle characterisation, the fluid mechanics of single and multi-particle systems and particulate fluidization. The physics underlying powder flow will be covered to enable introductory hopper design. Common powder processing operations will be studied, selected from powder mixing/segregation, sedimentation, dewatering and size enlargement.
After completing this unit, the student will be able to understand particle characterisation techniques and how the motion and fluid mechanics of a single particle and multi-particle assemblies are affected by particle properties. The student will be able to select a suitable particle characterisation method; manipulate particle size distribution data; model particle flow in fluids and fluidized beds; and be able to use particle properties to design a suitable powder hopper to ensure powder flow. Finally, the student will understand the underlying principles of several powder processing operations, be able to design the key parameters for that unit operation and develop an appreciation for the complexities of powder handling and processing.
Assignments/tests/laboratory: 30%
Final examination (3 hours): 70%
Students are required to achieve at least 45% in the total continuous assessment component (assignments, tests, mid-semester exams, laboratory reports) and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.
2 hours of lectures, 2 hours of practice sessions, an average of 1 hour of laboratories per week and 7 hours of private study per week
See also Unit timetable information
CHE3104