Faculty of Pharmacy and Pharmaceutical Sciences

Monash University

Undergraduate - Unit

This unit entry is for students who completed this unit in 2014 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.

FacultyFaculty of Pharmacy and Pharmaceutical Sciences
OfferedParkville First semester 2014 (Day)
Coordinator(s)Dr David Manallack


Note: Unit was previously coded PSC3091


This unit will introduce students to the different mechanisms of action by which drugs exert their biological activity. It will address the interactions between endogenous ligands and drugs with their receptors, enzymes or nucleic acids, and the way that drugs mimic, oppose or modify those interactions. Students will be introduced to the scope of medicinal chemistry techniques used in contemporary drug discovery.

This will involve the study of:

  • G-protein coupled receptors
  • other Receptor types
  • ion Channels
  • nuclear Hormone Receptors
  • drugs interacting with Oligonucleotides
  • enzyme and Enzyme Inhibition


At the end of this unit students will be able to:

  1. Identify the common classes of receptor and link this to an ability to define receptor agonists, antagonists, inverse agonists and allosteric modulators. In addition students will be able to cite examples of how compounds acting at receptors act as therapeutic agents;
  2. Describe various classes of enzymes by the reactions they catalyse and show an understanding of the kinetic properties of enzymes;
  3. Describe the utility of substrate analogues, transition state analogues, and irreversibly binding compounds as enzyme inhibitors. This will also be linked to an ability to understand how enzyme inhibitors act as therapeutic agents;
  4. Describe the role of metal ions in enzymatic processes;
  5. Show how ligands can recognize and modify DNA tertiary structure and link this with an ability to cite examples of how compounds acting at oligonucleotides function as therapeutics;
  6. Distinguish ligand-based design, structure-based design and mechanism-based design strategies;
  7. Understand the principles governing the generation of small molecule structure activity relationships;
  8. Understand approaches to peptidomimetic design;
  9. acquire skills in researching information and to present the findings in a structured, logical and fluent manner;
  10. Be proficient in chemical laboratory techniques and communicating the results in written form.


Final exam 60%; poster presentation: 15%; practical sessions, reports and other assessments 25%

Chief examiner(s)

Workload requirements

Contact hours for on-campus students:

  • Thirty two 1-hour lectures
  • Five 3-hour practicals/workshops
  • One 4-hour practical/workshop


PSC2011 Pharmaceutical biochemistry
PSC2021 Structural Organic Chemistry

Additional information on this unit is available from the faculty at: