units
MTH3360
Faculty of Science
This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.
Level | Undergraduate |
Faculty | Faculty of Science |
Offered | Clayton First semester 2012 (Day) |
Coordinator(s) | Dr Rosemary Mardling |
The basic equations of fluid dynamics; Cartesian tensors, the viscous stress tensor; equations of state; linearisation, sound and internal gravity waves; phase and group velocity; non-linear evolution; shocks; computational methods; Bernoulli's equation; vorticity and circulation; Kelvin's circulation theorem; rotational and irrotational flow; two dimensional homogenous incompressible flow; viscous effects and boundary layers; separation from a ball, with applications to cricket, golf and baseball; flow in a rotating reference frame, geostrophic flow.
On completion of this unit, students will: understand the scope of fluid dynamics in the physical sciences; understand the method of linearisation, and its application to waves in fluids; understand the physical reasons why waves may shock, and the nature of the developed shocks after they do; be familiar with the blast wave solutions, and the method of similarity; be aware of several basic numerical methods for one dimensional gas dynamics, as well as their strengths and limitations; understand how the fluid equations can be simplified for the case of an inviscid incompressible flow and be able to determine some simple irrotational flows; understand the effects of viscosity on high-speed flow, including the formation and behaviour of boundary layers; be familiar with the properties of rotating flows and the importance of the geostrophic approximation to flows on the surface of the Earth.
Examination (3 hours): 60%
Assignments: 20%
Tests: 20%
Three 1-hour lectures and an average of two 1-hour support classes per week