units
MTH3011
Faculty of Science
This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.
Level | Undergraduate |
Faculty | Faculty of Science |
Offered | Clayton First semester 2012 (Day) |
Coordinator(s) | Associate Professor Michael Page |
Introduction to PDEs; first-order PDEs and characteristics, the advection equation. Finite-difference methods for ODEs, truncation error. The wave equation: exact solution, reflection of waves. The heat equation: exact solution, fixed and insulating boundary conditions. Forward, backward and Crank-Nicholson numerical methods for the heat equation, truncation errors and stability analysis. Types of second-order PDEs; boundary and/or initial conditions for well-posed problems. Exact solutions of Laplace's equation. Iterative methods for Laplace's equation; convergence. Numerical methods for the advection equation; upwind differencing. Separation of variables for the wave and heat equations.
On the completion of this unit students will:
Examination (3 hours): 70%
Assignments and tests: 25%
Laboratory work: 5%
Associate Professor Michael Page
Three 1-hour lectures and one 2-hour laboratory class per week