Faculty of Science

Undergraduate - Unit

This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 0 (NATIONAL PRIORITY), 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.

FacultyFaculty of Science
OfferedClayton First semester 2012 (Day)
Coordinator(s)Professor John Davies and Dr Priscilla Johanesen


This unit concentrates on specific aspects of bacterial molecular biology. Areas examined include the molecular biology of plasmids and genetic elements such as plasmids, transposons, integrons and pathogenicity islands, recombination and DNA repair mechanisms. The ability of bacteria to control gene expression in response to extracellular signals will also be examined, as well as the intracellular transport and secretion of macromolecules, and some aspects of bacterial genomics.


On completion of this unit students will have built on previous broad knowledge to gain a theoretical understanding of: replication and mobilisation of bacterial plasmids, recombination and DNA repair mechanisms in the bacterial cell the molecular biology of transposons, integrons and pathogenicity islands molecular aspects of transport, assembly and secretion in the bacterial cell, the determination and use of bacterial genomic sequence data. Students will have acquired skills in: molecular analysis of components and processes in the bacterial cell, proper preparation and submission of laboratory reports, completion of literature searches and essay writing, use of computer networks to access information.


Written theory examination (3 hour): 50%
Laboratory reports and practical class assessment: 30%
Essay (2000 words): 20%

Chief examiner(s)

Professor John Davies

Contact hours

Three 1-hour lectures and one 3-hour laboratory class/tutorial per week


At least two of BMS2052, BMS2062, MIC2011, MIC2022, MOL2011 and MOL2022