units
MAE2403
Faculty of Engineering
This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.
Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.
Level | Undergraduate |
Faculty | Faculty of Engineering |
Offered | Clayton Second semester 2012 (Day) |
Coordinator(s) | Professor Murray Rudman |
This unit introduces numerical analysis techniques for interpolation, root finding, integration, the solution of ordinary differential equations, and the analysis of data. The role computers play in the solution of modern aerospace engineering problems is emphasized through exposure to finite difference, finite volume and finite element techniques for partial differential equations, and the implementation of these techniques in commercial fluid dynamics and structural mechanics packages.
Laboratory and Assignments (30%)
Examination (70%)
Recommended reading:
Anderson, J.D., Jr., "Computational Fluid Dynamics: The Basics with Applications", McGraw-Hill, 1995.
Chapra, S. C., "Applied Numerical Methods with MATLAB for Engineers and Scientists", McGraw-Hill, 2005.
Chapra, S. C., Canale, R. P., "Numerical Methods for Engineers", McGraw-Hill, 2002.
Lindfield, G., Penny, J., "Numerical Methods Using MATLAB", 2nd Edition, Prentice Hall, 2000.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., "Numerical Recipes in [C / C++ / Pascal / Fortran 77 / Fortran 90]", Cambridge University Press. (C & Fortran versions available online at http://www.nr.com/nronline_switcher.html ).
Tannehill, J. C., Anderson, D. A., Pletcher, R. H., "Computational Fluid Mechanics and Heat Transfer, Second Edition", Taylor & Francis, 1997.
5 hours per week lecture and laboratory contact hours, 7 hours per week self-study and assignment work