Not offered in 2008
This unit addresses the fundamental concepts and analytical tools for modelling, predicting and improving the performance of telecommunication networks. It also introduces simulation methods. First, network performance modelling and estimation is studied. Second, congestion in telecommunication networks is covered, and effectiveness of various congestion control algorithms, especially. Third, a comparative analysis of routing algorithms is covered from the graph theory perspective. The focus then shifts to individual links and an introduction to information theory, and limits of channel capacity are discussed. Finally, methods for Quality of Service (QoS) guarantees are studied.
To understand the basics of random processes and their relationship to traffic modelling.
To learn about link models for circuit switching, for packet switching and queuing theory for delay analysis.
To understand methods for modelling networks as graphs, and their application to routing.
To understand the fundamental principles of centralised network design.
To learn about flow and congestion control algorithms and their comparative analysis.
To know the building blocks of an architecture for guaranteed quality of service provision in next generation networks.
To develop skills to choose and use simulation tools for predicting network performance.
Appreciation of the role of a network engineer.
Confidence in identifying and using the most suitable analytical or simulation tool for network planning.
Continuous assessment: 30%
Examination: (3 hours) 70%. Students must achieve a mark of 45% in each of these two components to achieve an overall pass grade.
3 hours lectures, 3 hours laboratory and practice classes and 6 hours of private study per week
ECE2041 or ECE2401
ECE5045