MTE4572 - Polymer and composite processing and engineering
6 points, SCA Band 2, 0.125 EFTSL
Offered
Clayton First semester 2007 (Day)
Synopsis
This unit deals with the structure, processing and properties of polymers and shows how these aspects determine their use in particular applications. The rheology of polymers are discussed and the factors controlling viscosity are described and related to polymer processing. The thermodynamics of polymer blends and the resulting morphology is related to the mechanical properties. The wide range of polymer additives is reviewed. For composite materials, the types of matrices and fibres/fillers are described as well as composite fabrication and the effect of reinforcement on properties. Designing with polymers and materials selection for properties and applications is studied in detail.
Objectives
On successful completion of this course students will have:
- an understanding of steady shear, tensile and dynamic rheometry and how polymer rheology depends on molecular weight, structure, temperature and deformation rate, and how this determines the processing techniques used.
- an understanding of the factors affecting the stiffness and creep, the strength and toughness, the solvent resistance, electrical properties and the friction/wear of polymers
- developed a detailed understanding of the basis behind the selection of polymers and processing methods for specific applications and the properties required for their application
- developed an ability to analyse a design problem involving polymeric materials, to select the appropriate material(s) and to formulate a solution which includes material fabrication, reliability, quality control and an estimate of cost
- the ability to predict the properties of thermoplastics, thermosets, elastomers and composites, based on their structure
- developed the confidence to be able to communicate with scientists and industrialists regarding engineering polymers.
Assessment
Four written assignments: 20%
PBLE work: 20%
Examination (3 hours): 60%
Contact hours
3 hours lectures/tutorials and 7.5 hours of private study per week and 3 hours of problem based learning classes every two weeks
Prerequisites
MTE2545 or MTE3546
Prohibitions
MTE4560